BENZISOCHROMANQUINONES IN VENTILAGO SPECIES

T. HANUMAIAH, DAVID S. MARSHALL,* B. K. RAO, C. P. RAO, G. S. R. RAO, J. U. M. RAO, K. V. J. RAO and RONALD H. THOMSON*

Department of Chemistry, Nagarjuna University, Nagarjunanagar 522510, Andhra Pradesh, India; *Department of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen, AB9 2UE, Scotland

(Received 12 March 1985)

Key Word Index-Ventilago calyculata, V. maderaspatana; Rhamnaceae; benzisochromanquinone; ventiloquinone.

Abstract—From the acetone extract of the root bark of *Ventilago maderaspatana* eight new benzisochromanquinones, ventiloquinones A, B, C, D, E, F, G and H, have been isolated. Ventiloquinones I, J and K are three more new benzisochromanquinones isolated from the root bark of *V. calyculata*. The majority are 3,4,5,10-tetrahydro-cis-1,3-dimethyl-1H-naphtho[2,3-c]pyran-5,10-quinones related to eleutherin, but F, H, I, J and K are 6,9-quinones related to ventilagone.

INTRODUCTION

In pursuing our interest in the quinone constituents of *Ventilago* species [1-6] we have continued our investigations of *V. maderaspatana* and *V. calyculata*. In addition to the anthraquinones [1-4], naphthoquinones [5] and isofuranonaphthoquinones [6] reported earlier, we have encountered a new group of eight benzisochromanquinones in the acetone extract of the root bark of *V. maderaspatana*, designated ventiloquinones A-H, and from the acetone extract of the root bark of *V. calyculata* three more quinones of the same type, ventiloquinones I-K, were isolated. The structure elucidation of these quinones is the subject of this paper.

RESULTS AND DISCUSSION

Ventiloquinone-A, C₁₇H₁₆O₇, forms a methyl ether and an acetate, and its 1HNMR spectrum includes singlets for methoxyl-, peri-hydroxyl and methylenedioxy groups, but benzenoid and quinonoid protons are absent. The demethylated product shows a characteristic naphthazarin VIS absorption [7] and ¹H NMR signals for two peri hydroxyls; hence the methoxyl group of A is in a peri position. In addition to the above signals, the ¹H NMR spectrum shows signals for a fused dihydro-1,3dimethyl[2,3-c]pyran system which was corroborated by spin decoupling studies. Considerable fine structure for two non-equivalent methylene protons and two methine protons was observed due to geminal, vicinal and longrange couplings which can be interpreted as an ABXY pattern [8,9] ($\delta_A = 2.16$, $\delta_B = 2.70$, $\delta_X = 3.55$, $\delta_Y = 4.79$). Comparison of δ and J values for the pyran ring protons with those of eleutherin (1) [10] and isoeleutherin (2) [10] showed excellent agreement with the former. From the magnitude of the long range $(J_{AY} = 3.5 \text{ Hz}, J_{BY} = 3 \text{ Hz})$ and vicinal $(J_{AX} = 9 \text{ Hz}, J_{BX} = 3 \text{ Hz})$ coupling constants [11] it can be inferred that the C-1 and C-3 protons are axial and the signals at $\delta 2.16$ and 2.70, with larger and smaller coupling constants, can be attributed to axial and equatorial protons, respectively, at C-4. It follows that ventilone-A has one of the structures 3.

Ventiloquinone-B is the methyl ether of ventiloquinone-A and has the structure 4. Both A and B gave the same naphthazarin on demethylation (with HBr), and methylation of ventiloquinone-A afforded B.

Ventiloquinone-D, $C_{17}H_{18}O_7$, is a naphthazarin as indicated by its characteristic UV-VIS absorption and 1H NMR spectrum at low field. The 1H NMR spectrum also shows signals for two symmetrical methoxyl groups and a dihydro-1,3-dimethyl[2,3-c]pyran system. The long range coupling constants are smaller than those observed for ventiloquinones A and B consistent with fusion of the pyran ring to a tautomeric (i.e. partially benzenoid) system. Tautomerism also accounts for the formation of two dimethyl ethers (see below) one of which has J values close to those of A and B thus confirming the cis configuration of ventiloquinone-D. Thus D has structure 5; like other members of this family it has a large positive optical rotation.

Diazomethane methylation [12] of ventiloquinone-C gives ventiloquinone-D. Thus ventiloquinone-C has structure 6; in fact both isomers are present. TLC examination (multiple development) showed two very closely moving spots with R_f difference less than 0.1 cm and these compounds could not be separated. It is also clear from the observation of two pairs of signals (2:1 ratio) in the ¹H NMR spectrum for peri-hydroxyl protons. indicating the presence of two isomers in the same ratio. Moreover, the methylene proton (H_a-4) and H_c-4 signals appear to be doubled and, on scale expansion, the lower field methyl doublet further split into another doublet. On methylation (Me₂SO₄-K₂CO₃) of the isomeric mixture two trimethyl ethers were obtained, and these were identical with the two dimethyl ethers derived similarly from ventiloquinone-D. One of these, mp 113°, is regarded as 7 since it shows only two methoxyl signals at δ 3.88 (6H) and 4.00 (6H), and the pyran ring resonances are very close to those of B. The other isomer, a semi-solid, is 8; it shows three methoxyl signals at δ 3.80 (3H), 3.84 (3H) and 4.05 (6H), and the H-1 and H-4 proton resonances are broadened and shifted downfield relative

to those of 7. 1,5-Naphthoquinone structures can be excluded as they would be expected to show four methoxyl signals (see also ventiloquinone-K).

Ventiloquinone-E, C₁₈H₂₀O₆, forms a leucodiacetate showing characteristic naphthalenic UV absorption. The ¹H NMR spectrum of ventiloquinone-E revealed three methoxyl groups and an aromatic proton, and signals for a dihydrodimethylpyran ring very similar to those of previous compounds. The chemical shift of the aromatic proton ($\delta 6.72$) clearly indicates that it is located between two oxygen functions on the benzenoid ring [13], and hence the heterocyclic ring is fused to the quinone ring. As complete demethylation (HBr) afforded a naphthopurpurin derivative (UV-VIS, NMR) ventiloquinone-E is regarded as 9, the β -methoxyl being assigned to C-7 on biogenetic grounds, assuming an acetate-malonate origin, and analogy with F (see below). In agreement the ¹HNMR spectrum of E is very similar to that of 6hydroxy-7-methoxyeleutherin [14] found in Karwinskia humboldtiana (Rhamnaceae). As the CD curve of ventiloquinone-E is similar to that of eleutherin the chirality at the asymmetric centres must be 1R,3S (presumably this is the case for all the ventiloquinones).

Ventiloquinone-F, $C_{16}H_{16}O_5$, is a juglone derivative (UV) and its ¹H NMR spectrum shows signals for a methoxyl and a peri-hydroxyl group, a 1,3-dimethyl[2,3-c]pyran system, and two 1H singlets at δ 5.87 and 7.18. The signal at δ 5.87 must be assigned to a quinonoid proton adjacent to the methoxyl group, and that at δ 7.18 can be attributed to a peri-proton. Thus ventiloquinone-F is a 2-or 3-methoxyjuglone with the pyran system fused to the benzenoid ring, and that is reflected in the smaller $J_{1,4}$ coupling constants (2.2 and 1.7 Hz) which are normally observed in such compounds [15, 16]. As the signals for the H-4 protons are well separated the peri-hydroxyl must

be at C-5 (see section below on ventiloquinone-H). Ventiloquinone-F therefore has structure 10 or the 8-methoxy isomer. The proton coupled 13 C NMR spectrum shows that the chelated quinone carbonyl signal at δ 182.60 is a doublet (J=5.1 Hz) and the other carbonyl signal at δ 179.20 is also a doublet (J=1.8 Hz). Although relatively small these couplings are consistent only with structure 10; the sample was small and $^2J_{C-H}$ was not resolved.

Ventiloquinone-G, C₁₅H₁₄O₆, is a naphthopurpurin (UV-VIS, ¹H NMR, soluble aq. NaHCO₃) with a fused dihydro-1,3-dimethyl[2,3-c]pyran ring as indicated by its ¹H NMR spectrum; the remaining ring proton appears at $\delta 6.34$ (6.37 in naphthopurpurin [17]). The splitting pattern for the heterocyclic ring protons is virtually the same as in ventiloquinone-D so that ventiloquinone-G has the tautomeric structure 11, assigning the β -hydroxyl to C-7 on biogenetic grounds. Attempts to correlate G with E were unsuccessful. The product obtained by vigorous demethylation of E (see above) was different from G and is probably the trans epimer (inadequate resolution of its ¹H NMR spectrum precluded confirmation in that way). Methylation of G with diazomethane gave a monomethyl ether 12 which was also different from the monomethyl ether derived from E by peridemethylation with BBr₃. The implication is that 12 derived from G is cis but the BBr3 reaction also effected epimerization so forming the trans isomer of 12. The ¹HNMR spectrum of the former confirmed its cis configuration. In the spectrum of 12 derived from E the resolution was inadequate to obtain long range coupling constants but it could be observed that the splitting pattern for the H-4_{e'} proton was dd and not dt as found for the epimer. This implies that $J_{1,4}$ is very small, consistent with a trans structure for 12 derived from E. Efforts to

epimerize cis 12 under various acidic conditions were not fruitful.

Ventiloquinone-H, C₁₇H₁₈O₆, is identified as a juglone from its UV-VIS, IR and ¹H NMR spectra. The ¹H NMR spectrum shows signals for a peri hydroxyl, a peri proton and two methoxyl groups whose chemical shifts ($\delta 4.06$ and 4.09) are consistent with their location on the quinone ring [17]. Ventiloquinone-H is thus a 2,3-dimethoxyjuglone and this is in accordance with the monodemethylation which occurs on heating in ethanolic hydrochloric acid for 30 min. Only the methoxyl group at C-3 (naphthoguinone numbering) was hydrolysed [12] and further demethylation did not occur when the reaction was continued for 1 hr more. A dihydro-1,3dimethyl[2,3-c]pyran system is again present (NMR) in ventiloquinone-H but the splitting pattern for the pyran ring protons differs from the previous compounds, in particular the signals from the two H-4 protons overlap (in CDCl₃ solution) at δ2.68. A comparison shows that the pattern is very similar to that of ventilagone (13) [18, 19] where the methylene (H-4) protons appear as an irregular multiplet at δ2.68 (CDCl₃). However, in C₆D₆ solution the H-4 signals are well separated so that coupling constants could be measured. The $J_{1,4}$ values were close to those of F confirming that in ventiloquinone-H also the 1,3-dimethyl groups are in the cis-configuration, with the pyran ring fused to the benzenoid ring. Thus ventiloquinone-H has structure 14. Overlap of the H-4 signals (in CDCl₃) is a feature of these benzisochromanquinones which have no oxygen function at C-5. Evidently a perisubstituent enhances the non-equivalence of the methylene protons; a similar peri effect has been observed in dihydroisocoumarins [20, 21].

Ventiloquinone-I is the mono-desmethyl ether of ventiloquinone-H. The structures were correlated by methylation of ventiloquinone-I with diazomethane to give H, and further, the mono-demethylated product of ventiloquinone-H (see above) is identical with ventiloquinone-I, which is assigned structure 15.

Ventiloquinone-J, $C_{17}H_{18}O_6$, contains a peri-hydroxyl and two methoxyl groups, and a 1H singlet at δ 6.04 must be ascribed to a proton on the quinone ring adjacent to a methoxyl group. Consequently the central ring is benzenoid with the second methoxyl occupying a periposition. The presence of a dihydro-1,3-dimethyl[2,3c]pyran system fused to the benzene ring was clearly evident from the ¹H NMR spectrum, and the coupling constants and splitting pattern were similar to those of ventiloquinone-F (but less well resolved at 220 MHz). Ventiloquinone-J can thus be assigned the structure 16 assuming that the β -methoxyl is located at C-7 as in F. Unfortunately it was not possible to correlate J with G owing to lack of material but a peri-demethylation of J with BCl3 gave a product identical (TLC, MS, only) with trans 12 obtained from E with BBr₃.

Ventiloquinone-K, $C_{17}H_{18}O_7$, is a fully substituted naphthoquinone as indicated by its ¹H NMR spectrum which shows the presence of two methoxyls, one *peri*hydroxyl, and another hydroxyl which must be placed on the quinone ring as the pigment is soluble in aq. NaHCO₃. The chemical shift (δ 4.13) of one methoxyl suggests that it is adjacent to the hydroxyl on the quinone ring [17]. The central ring is therefore benzenoid with the other methoxyl group in a *peri*-position. The dihydro-1,3-dimethyl[2,3-c]pyran system is again indicated by its ¹H NMR spectrum, the splitting pattern being similar to

those of ventiloquinones F and J, the $J_{1,4}$ values corresponding to the usual 1,3-cis-diequatorial geometry with the pyran ring fused to the benzene ring (a trans arrangement is excluded because $J_{e'e'}$ would then be < 1 Hz). Thus ventiloquinone-K is one of the structures 17. The dimethyl ether (Me₂SO₄-K₂CO₃-Me₂CO) of ventiloquinone-K was found to be identical with the tetramethyl ether 8 derived from ventiloquinone-C. Ventiloquinone-K was unaffected by BCl₃ and BBr₃ under conditions where J was peri-demethylated. This suggests that in K (17) the peri-methoxyl occupies the more hindered position at C-10 whereas in J (16) the perimethoxyl is at C-5.

EXPERIMENTAL

Silica gel-G and silica gel (100-200 mesh), Acme, India were used for prep. TLC and CC respectively.

Plant material. Voucher specimens, V. calyculata No. NUH238 and V. maderaspatana No. NUH171 are deposited at Nagarjuna University Herbarium.

Extraction and purification. Air dried, powdered root bark (2.5 kg) of V. maderaspatana was extracted with Me₂CO. Part of the dark brown residue (50 g) was subjected to CC on silica gel (300 g). The column was eluted with C_6H_6 -petrol (1:1) (fractions 1-90), C₆H₆ (fractions 92-172), C₆H₆-EtOAc (9:1) (fractions 173-212), C₆H₆-EtOAc (4:1) (fractions 213-240). Fractions 91-120 (4 g) were rechromatographed on silica gel (60 g) and eluted with C₆H₆ collecting 75 ml fractions. The earlier fractions did not yield any solid. Fractions 13-26 on prep. TLC (C₆H₆-EtOAc, 9:1) gave ventiloquinone-A as bright red needles (MeOH), mp 148° (46 mg). Fractions containing ventiloquinones D and H (fractions 11-58) were separated by prep. TLC (C₆H₆-EtOAc, 9:1). Ventiloquinone-D crystallized from MeOH as dark red microcrystals (74 mg), mp 101°, ventiloquinone-H separated from petrol as orange red crystals (29 mg), mp 95-96°. Fractions 157-172 were subjected to CC (C₆H₆, C₆H₆-EtOAc, 19:1). Ventiloquinone-C was eluted with C₆H₆; it crystallized from aq. MeOH as dark red needles (62 mg), mp 137°. The C₆H₆-EtOAc (19:1) eluate containing ventiloquinone-B was purified by prep. TLC (C₆H₆-EtOAc, 4:1), and crystallized from MeOH as yellow needles (56 mg), mp 134°. Fractions 173-196 were subjected to CC (C₆H₆-EtOAc, 9:1). Ventiloquinone-G eluted in the latter fractions together with C. They were separated by prep. TLC on silica gel-1% (CO₂H)₂ plates (C₆H₆-EtOAc, 19:1). Ventiloquinone-G crystallized from MeOH-petrol as orange red crystals (10 mg), mp 183°. Fractions 197-212 were subjected to rechromatography (CC: C₆H₆-EtOAc, 9:1). Fractions containing ventiloquinone-F on prep. (C₆H₆-EtOAc, 9:1) followed by crystallization MeOH-petrol gave orange red needles (34 mg), mp 213°. Fractions 214-219 on CC (C₆H₆-EtOAc, 4:1) and repeated crystallization from C₆H₆ gave ventiloquinone-E as orange red needles (110 mg), mp 119°.

For a preliminary separation of the quinones from the Me₂CO extract of V. calyculata see ref. [2]. Fractions 97-112 were subjected to CC (C_6H_6 -EtOAc, 9:1). Ventiloquinones I, J and K were eluted together in C_6H_6 -EtOAc (9:1). They were separated by repeated prep. TLC (C_6H_6 -EtOAc, 19:1) on silica gel-2% (CO_2H_2 plates. Ventiloquinone-I crystallized from MeOH-petrol as red flakes (29 mg), mp 189°; ventiloquinone-J from C_6H_6 -petrol as dark red flakes (21 mg), mp 141°; and ventiloquinone-K (from MeOH-petrol) as red needles, (18 mg), mp 157°.

Ventiloquinone-A (3). Found: C, 62.08; H, 4.90%; [M]⁺, 332.0896. C₁₇H₁₆O₇ requires C, 61.44; H, 4.85%; [M]⁺,

332.0895; $[\alpha]_D^{25} + 299^\circ$ (CHCl₃, c 0.22); UV λ_{max}^{EtOH} nm (log ϵ): 225 (4.46), 270 (4.23), 294 (3.80), 435 (3.57); IR $v_{\text{max}}^{\text{nujoi}}$ cm⁻¹: 920, 1632, 1662; ¹H NMR (360 MHz, CDCl₃): δ 1.35 (3H, d, J = 6.1 Hz, Me-3), 1.50 (3H, d, J = 6.4 Hz, Me-1), 2.17 (1H, ddd, J = 18.3, 10.2, 3.9 Hz, H_a -4), 2.69 (1H, dt, J = 18.3, 2.65, 2.65 Hz, H_e -4), 3.55 (1H, m, 14 lines H-3), 3.98 (3H, s, OMe), 4.81 (1H, m, 13 lines H-1), 6.18 (2H, s, -OCH₂O-), 12.51 (1H, s, exch. with D₂O, peri-OH); (C₆D₆, 100 MHz): δ 1.19 (3H, d), 1.71 (3H, d), 2.00 (1H, ddd), 2.55 (1H, dt), 3.22 (1H, m), 3.88 (3H, s), 4.85 (1H, m), 5.30 (2H, s); MS m/z: 322 (100 %), 317 (45), 303 (32), 299 (9), 289 (20), 274 (16). The acetate (Ac₂O-C₅H₅N) was obtained as bright yellow needles (petrol), mp 172°. Found: C, 61.18; H, 4.82%. C₁₉H₁₈O₈ requires C, 60.96; H, 4.85%; ¹H NMR (100 MHz, CDCl₃): δ 1.32 (3H, d, J = 7 Hz, Me-3), 1.48 (3H, d, J = 7 Hz, Me-1), 2.04 (1H, ddd, J = 18, 10, 3.5 Hz, H_a-4), 2.40 (3H, s, OAc), 2.66 (1H, dt, J = 18, 3, 3 Hz, $H_{e'}$ -4), 3.48 (1H, m, H-3), 4.00 (3H, s, OMe), 4.75 (1H, H-1), 6.13 (2H, s, -OCH₂O-). The methyl ether (Me₂SO₄-K₂CO₃-Me₂CO or MeI-Ag₂O-CHCl₃) forms yellow needles (MeOH), mp 134°, identical with ventiloquinone-B (co-TLC, mmp and IR). The demethylated product (HBr-AcOH) of ventiloquinone-A was identical with the demethylated product of ventiloquinone-B (see below) (co-TLC, IR, UV).

Ventiloquinone-B (4). Found: C, 62.50; H, 5.20%; [M]+, 346.1050. C₁₆H₁₈O₇ requires C, 62.42; H, 5.24%; M, 346.1052. $[\alpha]_D^{25} + 350^\circ$ (CHCl₃, c 0.12); UV λ_{max}^{EtOH} nm (log ϵ): 222 (4.19), 273 (4.10), 294 sh (3.37), 400 (3.28); $IR v_{max}^{nujol} cm^{-1}$: 920, 1628, 1650, 1662; ¹H NMR (360 MHz, CDCl₃): δ 1.33 (3H, d, J = 6.2 Hz, Me-3, 1.48 (3H, d, J = 6.6 Hz, Me-1), 2.08 (1H, ddd, J)= 18.4, 10.2, 3.8 Hz, H_a -4) 2.77 (1H, dt, J = 18.4, 2.66, 2.66 Hz, H_e-4), 3.52 (1H, m, 14 lines, H-3), 3.98 (3H, s, OMe), 3.99 (3H, s, OMe), 4.77 (1H, m, 13 lines, H-1), 6.13 (2H, s, -OCH₂O-); ¹³C NMR (25.2 MHz, CDCl₃): δ20.40 (q, C-3a), 21.36 (q, C-1a), 29.67 (t, C-4), 61.0 (q, OMe), 61.1 (q, OMe), 69.04 (d, C-3), 69.86 (d, C-1), 103.0 (t, OCH₂O), 120.79 (s, C-5a)a, 121.65 (s, C-9a)a, 140.13 (s, C-6)b, 140.37 (s, C-7)b, 141.10 (s, C-8)b, 144.22 (s, C-9)b, 144.60 (s, 10a)^c, 146.48 (s, C14a)^c, 182.50 (s, CO), 183.29 (s, CO) (assignments with the same superscript may be interchangeable). MS m/z (rel. int.): 346 (100 %), 331 (82), 317 (23), 316 (27), 313 (33), 303 (16), 301 (16), 289 (17), 288 (23), 273 (22). The demethylated product (HBr-AcOH) was obtained as dark red needles (MeOH), mp 127°. Found: C, 60.44; H, 4.49 %. C₁₆H₁₄O₇ requires C, 60.38; H, 4.43%; UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm: 250, 290, 460, 485, 510, 520, 568; $\lambda_{\text{max}}^{\text{MeOH-HO}^-}$ nm: 557, 593; IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 1610. This naphthazarin was the trans epimer. The cis epimer was obtained by treating A (12 mg) in CH₂Cl₂ (5 ml) at -78° with molar BCl₃ in CH₂Cl₂ (0.15 ml) for 1 hr. The crude product was separated from starting material by prep. TLC (CHCl₃) and then sublimed at 115°/0.001 mm Hg to give red needles, mp 142.5–143.5°; Found: $[M]^+$, 318.0731. $C_{16}H_{14}O_7$ requires 318.0739; $IR \nu_{max}^{KBr} cm^{-1}$: 1610; ¹H NMR (220 MHz, CDCl₃): δ 1.34 (3H, d, J = 8 Hz, Me-3), 1.57 (3H, d, J = 8 Hz, Me-1), 2.29 (1H, ddd, J = 18, 9, 3.5 Hz, H_a-4), 2.80 (1H, ddd, J=18, 3.5, 2.5 Hz, H_a-4), 3.58 (1H, m, 3H), 4.87 (1H, m, H-1), 6.21 (2H, s, -OCH₂O-), 12.67 and 12.79 (each 1H, s, exch. with D2O, peri-OH).

Ventiloquinone-C (6). Found: C, 59.84; H, 4.98%; $[M]^+$, 320.0896. $C_{16}H_{16}O_7$ requires C, 60.00; H, 5.04%; $[M]^+$, 320.0893; UV λ_{max}^{EIOH} nm (log ε): 250 (4.10), 308 (3.68), 461 (3.65), 488 (3.71), 526 (3.58), 565 (3.14); IR ν_{max}^{nujol} cm⁻¹: 1590, 3300; 1H NMR (220 MHz, CDCl₃): δ 1.39 (3H, d, J = 7 Hz, Me-3), 1.64 (3H, d, J = 7 Hz, Me-1), 2.42 (1H, ddd, J = 18, 10, 2.5 Hz, H_a -4 overlapped by similar signals) 2.90 (1H, dt, J = 18, 3, \sim 2 Hz, H_e -4 overlapped by similar signals), 3.64 (1H, m, H-3), 4.20 (3H, s, OMe), 5.0 (1H, m, H-1), 12.23/12.90; 11.97/13.17 (2:1 ratio, total 2H, all s, exch. with D_2O , 2 × peri-OH); MS m/z: 320 (100%), 305 (80), 302 (6), 290 (14), 289 (14), 287 (16), 277 (24), 276 (54), 261 (17).

The monomethyl ether (CH₂N₂ in Et₂O for 1 min) was identical with ventiloquinone-D (co-TLC, IR and mmp). Methylation (Me₂SO₄-K₂CO₃-Me₂CO) of ventiloquinone-C afforded two trimethyl ethers separated by prep. TLC (CHCl₃).

Methyl ether 7 was obtained as yellow needles (C_6H_6 -petrol), mp 113°; Found: C, 63.08; H, 6.20%. $C_{19}H_{22}O_7$ requires C, 62.98; H, 6.12%; ¹H NMR (100 MHz, CDCl₃): δ 1.34 (3H, d, J = 7 Hz, Me-3), 1.48 (3H, d, J = 7 Hz, Me-1), 2.06 (1H, ddd, J = 18, 10, 3.5 Hz, H_a -4), 2.78 (1H, dt, J = 18, 3, 3 Hz, H_e -4), 3.52 (1H, m, H-3), 3.88 (6H, s, 2 × OMe), 4.0 (6H, s, 2 × OMe), 4.76 (1H, m, H-1); Methyl ether 8 was obtained as an orange red viscous liquid; Found: [M]⁺, 362.1364. $C_{19}H_{22}O_7$ requires M, 362.1365; ¹H NMR (100 MHz, CDCl₃): δ 1.38 (3H, d, J = 7 Hz, Me-3), 1.58 (3H, d, J = 7 Hz, Me-1), 2.40 (1H, s (br), H_a -4), 2.90 (1H, s (br), H_e -4), 3.52 (1H, m, H-3), 3.80 (3H, s, OMe), 3.84 (3H, s, OMe), 4.05 (6H, s, 2 × OMe), 5.0 (1H, q (br), H-1); MS m/z: 362 (84%), 347 (100), 332 (20), 331 (16), 317 (24), 303 (29), 287 (17), 273 (13).

Ventiloquinone-D (5). Found: C, 61.20: H, 5.47%; [M]+, 334.1047. C₁₇H₁₈O₇ requires C, 61.07; H, 5.43%; [M]⁺ 334.1052; $[\alpha]_D^{25} + 308^{\circ}$ (CHCl₃, c 0.17); UV $\lambda_{\text{max}}^{\text{EtOH}}$ nm (log s): 232 (4.58), 310 (3.94), 465 (3.94), 500 (4.04), 535 (3.84), 585 (2.97); IR $v_{\text{max}}^{\text{KBr}}$ cm⁻¹ 1610; ¹H NMR (360 MHz, CDCl₃): δ 1.37 (3H, d, J = 6.1 Hz, Me-3, 1.61 (3H, d, J = 6.4 Hz, Me-1), 2.38 (1H, ddd, J)= 17.8, 10.4, 2.6 Hz, H_a -4), 2.87 (1H, ddd, J = 17.8, 2.3, 2.1 Hz, H_{e} -4), 3.60 (1H, ddq, J = 10.4, 6.1, 2.3 Hz, H-3), 4.10 (6H, s, 2 \times OMe), 4.97 (1H, ddq, J = 6.4, 2.6, 2.3 Hz, H-1), 12.89 and 13.12 (each 1H, s, exch. with D₂O, peri-OH); ¹³C NMR (25.2 MHz, CDCl₃): δ 20.84 (q, C-3a), 21.31 (q, C-1a), 30.82 (t, C-4), 61.47 (q, 2 × OMe), 68.51 (d, C-3), 70.51 (d, C-1), 107.6 (s, C-5a, 9a), 137.5 (s, C-4a)a, 140.79 (s, C-10a)a, 147.48 (s, C-7, 8), 158.1 (C-6, 9), 181.47 (s, $2 \times CO$) (assignments with the same superscript may be interchanged); MS m/z: 334 (100%), 319 (60), 305 (11), 304 (23), 303 (27), 291 (28), 290 (28), 275 (16), 261 (11).

Ventiloquinone-E (9). Found: C, 65.10; H, 6.03%; [M]+ 332.1257. $C_{18}H_{20}O_6$ requires C, 65.06; H, 6.07%; [M]⁺ 332.1259; $[\alpha]_D^{25}$ + 438° (CHCl₃, c 0.13); UV λ_{max}^{EtOH} nm (log e): 220 (4.46), 270 (4.11), 417 (3.48); $IR v_{max}^{KBr} cm^{-1}$: 1637, 1645, 1667; ¹H NMR (360 MHz, CDCl₃): δ 1.33 (3H, d, J = 6.2 Hz, Me-3), 1.49 (3H, d, J = 6.6 Hz, Me-1), 2.10 (1H, ddd, J = 18.3, 10.2, 3.7 Hz, H₂-4), 2.80 (1H, dt, J = 18.3, 2.6, 2.6 Hz, H₂-4), 3.52 (1H, ddq, 10.2, 6.2, 2.6 Hz, H-3), 3.86 (3H, s, OMe-7), 3.96 (6H, s, OMe-6 and 9), 4.79 (1H, ddq, 6.6, 3.7, 2.6 Hz, H-1), 6.72 (1H, s, H-8); C_6D_6 (100 MHz): $\delta 1.18$ (3H, d), 1.76 (3H, d), 2.0 (1H, ddd), 2.80 (1H, dt), 3.2 (1H, m), 3.28 (3H, s), 3.50 (3H, s), 4.04 (3H, s), 4.96 (1H, m), 6.24 (1H, s); ¹³C NMR (25.2 MHz, CDCl₃): δ20.63 (C-3a), 21.31 (C-1a), 29.69 (C-4), 56.26, 56.85, 61.35 (3 × OMe), 68.96 (C-3), 70.13 (C-1), 101.65 (C-8), 113.75 (C-5a)a, 126.64 (C-9a)a, 140.73 (C-10a)b, 143.49 (C-4a)b, 147.63 (C-7), 157.66 (C-6), 159.44 (C-9), 182.50, 183.75 ($2 \times CO$) (assignments with the same superscript may be interchanged). MS m/z: 332 (89%), 317 (100), 303 (11), 302 (28), 299 (14), 289 (8), 287 (10), 274 (18), 259 (14); CD $\lambda_{\text{max}}^{\text{MeOH}} \Delta \varepsilon$ (nm): -7.59 (221), +8.38 (287), +1.55 (408), [eleutherin (1) -3.34 (240), +3.92 (277), +3.06 (330), +1.67(390)].

The leucodiacetate (Ac₂O, Zn, NaOAc) was obtained as needles (MeOH), mp 140°. Found: C, 63.02; H, 6.84%; $C_{22}H_{26}O_8$ requires C, 63.15; H, 6.26%; UV λ_{max}^{MeOH} nm: 305, 317, 342; IR ν_{max}^{KBr} cm⁻¹: 1765; ¹H NMR (100 MHz, CDCl₃): δ 1.31 (3H, d, J = 7 Hz, Me-3), 1.56 (3H, d, J = 7 Hz, Me-1), 2.08 (1H, m, H-4), 2.30 (3H, s, OAc), 2.33 (3H, s, OAc), 2.60 (1H, m, H-4), 3.68 (1H, m, H-3), 3.75 (3H, s, OMe), 3.82 (3H, s, OMe), 3.88 (3H, s, OMe), 4.92 (1H, m, H-1), 6.72 (1H, s, H-7). The demethylated product, trans 11 (HBr-AcOH), was obtained as red microcrystals (MeOH), mp 219°. Found: C, 62.24; H, 4.98% C₁₅H₁₄O₆ requires C, 62.07; H, 4.86% UV λ_{max}^{MeOH} : 315, 474, 495, 520 sh, 540 sh; IR ν_{max}^{KBr} cm⁻¹: 1600, 3400; ¹H NMR (100 MHz, CDCl₃): δ 1.43 (3H, d, J = 7 Hz,

Me-3), 1.65 (3H, d, J = 6 Hz, Me-1), 2.42 (1H, 4 s (br), H_a -4), 2.94 (1H, 2 s (br), H_c -4), 4.12 (1H, m, H-3), 5.23 (1H, m, H-1), 6.40 (1H, s, H-8), 12.00 and 13.34 (each 1H, s, exch. with D₂O, peri-OH). Demethylation as for ventiloquinone B, but using BBr₃, gave, after prep. TLC (CHCl₃-petrol, 2:1), trans 11 as a red solid; ¹H NMR (220 MHz, CDCl₃): δ 1.40 (3H, d, J = 8 Hz, Me-3), 1.61 (3H, d, J = 8 Hz, Me-1), 2.40 (1H, dd (br), H_a -4), 2.90 (1H, dd, H_c -4), 3.95 (3H, s, OMe), 4.07 (1H, m, H-3), 5.17 (1H, q, H-1), 6.18 (1H, s, H-8), 12.75 and 13.20 (each 1H, s, peri-OH).

Ventiloquinone-F (10). Found: C, 66.39; H, 5.32%; [M]+ 288.0996. C₁₆H₁₆O₅ requires C, 66.66; H, 5.59%; [M]⁺, 288.0997; $[\alpha]_D^{25} + 350^\circ$ (MeOH, c 0.14); UV λ_{max}^{MeOH} nm (log ϵ): 256 (4.38), 299 (3.84), 422 (3.70); $\lambda_{\text{max}}^{\text{MeOH-HO}}$ nm: 511; IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 1645, 1662 sh; ¹H NMR (360 MHz, CDCl₃): δ 1.38 (3H, d, J = 6.2 Hz, Me-3), 1.54 (3H, d, J = 6.6 Hz, Me-1), 2.43 $(1H, ddd, J = 17.5, 10.9, 2.2 Hz, H_a-4), 2.83 (1H, ddd, J = 17.6,$ 3.0, 1.7 Hz, H_{c} -4), 3.75 (1H, ddq, J = 10.9, 6.2, 3.0 Hz, H-3), 3.95 (3H, s, OMe), 4.77 (1H, ddq, J = 6.6, ~ 1.95 , ~ 1.95 Hz, H-1), 5.87 (1H, s, H-8), 7.18 (1H, s, H-10), 12.38 (1H, exch. with D₂O, peri-OH); ¹³C NMR (90.6 MHz, CDCl₃): δ20.87 (q, C-3a), 21.51 (q, C-1a), 29.99 (t, C-4), 56.55 (q, OMe), 69.77 (d, C-3), 72.97 (d, C-1), 102.59 (d, C-8)a, 111.39 (s, C-5a), 113.72 (d, C-10)a, 128.18 (s, C-9a)b, 128.73 (s, C-4a)b, 150.01 (s, C-10a), 162.83 (s, C-5)c, 168.02 (s, C-7)c, 179.20 (s, C-9), 182.60 (s, C-6) (assignments with the same superscript may be interchanged); MS m/z: 288 (17%), 260.1036 (C₁₅H₁₆O₄ requires 260.1041, 38), 246 (13), 245.0814 (C₁₄H₁₃O₄ requires 245.0814, 62), 232 (6), 229 (7), 218 (30), 216 (100), 215 (12), 203 (31), 201 (35),

Ventiloquinone-G (11). Found: C, 62.00; H, 4.82%; [M]+, 290.0795. $C_{15}H_{14}O_6$ requires C, 62.07; H, 4.86%; [M]⁺, 290.0790; $[α]_D^{18}$ + 720° (MeOH, c 0.10); UV $λ_{max}^{MeOH}$ nm (log ε): 230 (4.22), 258 (4.11), 300 (3.87), 478 sh (3.82), 500 (3.83), 526 sh (3.74), 540 sh (3.60); $\lambda_{\text{max}}^{\text{McOH-HO}^-}$ nm: 500, 530, 568; λ MeOH-AlCl₃ nm: 240, 343, 492 sh, 524, 564; IR ν KBr cm⁻¹: 1600, 1622, 3300; ¹H NMR (360 MHz, CDCl₃): δ 1.38 (3H, d, J = 6.2 Hz, Me-3, 1.63 (3H, d, J = 6.4 Hz, Me-1), 2.40 (1H, ddd, J)= 17.6, 10.4, 2.6 Hz, H_a -4), 2.87 (1H, dt, J = 17.6, 2.1, 2.1 Hz, H_e -4), 3.62 (1H, ddq, J = 10.4, 6.2, 2.1 Hz, H-3), 5.02 (1H, qt, J = 6.4, ~ 2.3 , ~ 2.3 Hz, H-1), 6.34 (1H, s, H-8), 7.40 (1H, s (br), exch with D₂O, HO-7), 11.95 and 13.46 (each 1H, s, exch. with D₂O, peri-OH); MS m/z: 290 (100%), 275 (55), 261 (13), 248 (29), 247 (24), 246 (27), 245 (10), 232 (13), 231 (10), 228 (10). Methylation (CH₂N₂) gave, after prep. TLC (CHCl₃) a red solid; ¹H NMR (220 MHz, CDCl₃): δ 1.41 (3H, d, J = 6 Hz, Me-3), 1.65 (3H, d, J= 6 Hz, Me-1), 2.42 (1H, ddd, H_a -4), 2.90 (1H, ddd, H_e -4), 3.63 (1H, m, H-3), 3.95 (3H, s, OMe), 5.01 (1H, m, H-1), 6.19 (1H, s, H-8), 12.77 and 13.37 (each 1H, exch. with D2O, peri-OH).

Ventiloquinone-H (14). Found: C, 64.38; H, 5.62%; [M] $^{+}$ 318.1097. $C_{17}H_{18}O_6$ requires C, 64.14; H, 5.70%; $[M]^+$, 318.1103; $[\alpha]_D^{25} + 330^\circ$ (MeOH, c 0.13); UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ϵ): 258 (4.25), 300 (4.02), 423 (3.69); $\lambda_{\text{max}}^{\text{MeOH-HO}}$ nm 530; IR $v_{\text{max}}^{\text{KBr}}$ cm⁻¹: 1620, 1670; ¹H NMR (360 MHz, CDCl₃): δ 1.33 (3H, d, J = 6.1 Hz, Me-3), 1.60 (3H, d, J = 6.3 Hz, Me-1), 2.68(2H, 5q, irregular, CH₂-4), 3.64 (1H, m, 11 lines, H-3), 4.06 (3H, s, OMe), 4.09 (3H, s, OMe), 5.02 (1H, qt, J = 6.3, ~ 1.8 , ~ 1.7 Hz, H-1), 7.32 (1H, s, H-5), 12.45 (1H, s, exch. with D₂O peri-OH); (360 MHz, C_6D_6): $\delta 1.14$ (3H, d, J = 6.1 Hz, Me-3), 1.81 (3H, d, J= 6.4 Hz, Me-1), 2.05 (1H, ddd, J = 16.5, 10.4, 2.0 Hz, $H_{a'}$ -4), 2.34 $(1H, ddd, J = 16.5, 1.8, 1.0 Hz, H_{e'}-4), 3.29 (1H, m, 14 lines, H-3),$ 3.60 (3H, s, OMe), 3.70 (3H, s, OMe), 5.06 (1H, qdd, 6.3, 1.9, 1.9 Hz, H-1) [in ventilagone H_a -4 and H_e -4 appear at δ 2.04 and 2.34 (in C_6D_6), respectively]. MS m/z: 318 (22%), 303.0852 (C₁₆H₁₅O₆ requires 303.0868, 100), 275 (8), 261 (10). Ventiloquinone-H (10 mg) was demethylated with conc. HCl (10 ml) in refluxing EtOH (10 ml) for 30 min. The product was obtained as bright red flakes (MeOH-petrol), mp 184°, and

found to be identical with ventiloquinone-I (co-TLC, mmp, ¹H NMR).

Ventiloquinone-1 (15). Found: C, 62.96; H, 5.20%; [M]⁺, 304.0937, $C_{16}H_{16}O_6$ requires C, 63.15; H, 5.30%; [M]⁺, 304.0947; UV λ_{max}^{MeOH} nm (log ε): 235 (4.22), 280 (4.08), 408 (3.82); IR ν_{max}^{KBr} cm⁻¹: 1625, 1660, 3380; ¹H NMR (220 MHz, CDCl₃): δ 1.37 (3H, d, J = 7 Hz, Me-3), 1.64 (3H, d, J = 7 Hz, Me-1), 2.72 (2H, m, CH₂-4) (the H-4 signals separate in C_6D_6 soln), 3.67 (1H, m, H-3), 4.19 (3H, s, OMe), 5.04 (1H, q (br), J = 7 Hz, H-1), 6.80 (1H, s (br), exch. with D_2O , OH), 7.37 (1H, s, H-5), 11.68 (1H, s), exch. with D_2O , peri-OH); MS m/z: 304 (26%), 289.0702 ($C_{15}H_{13}O_6$ requires 289.0712, 100), 271(7), 261 (6), 247 (7). The monomethyl ether of ventiloquinone-I (CH₂N₂ in Et₂O) was found to be identical with ventiloquinone-H (co-TLC, mmp, ¹H NMR). Methylation with Me₂SO₄-K₂CO₃-Me₂CO gave two trimethyl ethers identical (co-TLC) with those obtained from ventiloquinone-C.

Ventiloquinone-J (16). Found: C, 64.07; H, 5.64%; [M]⁺, 318.1112. $C_{17}H_{18}O_6$ requires C, 64.14; H, 5.70%; [M]⁺, 318.1103. [α]₂₀²² + 215° (MeOH, c 0.10); UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ε): 232 (4.20), 250 sh (3.80) 295 (3.77), 435 (3.48); IR $\nu_{\text{max}}^{\text{KB}}$ cm⁻¹: 1620, 1668; ¹H NMR (220 MHz, CDCl₃): δ1.49 (3H, d, J = 7 Hz, Me-3), 1.74 (3H, d, J = 7 Hz, Me-1), 2.50 (1H, ddd, J = 18, 2, ~2.5 Hz, H_α-4), 2.97 (1H, dt, J = 18, ~1 Hz, H_e-4), 3.61 (1H, m, H-3), 3.84 (3H, s, OMe), 3.93 (3H, s, OMe), 5.04 (1H, q (br), J = 7 Hz, H-1), 6.04 (1H, s, H-8), 13.42 (1H, s, exch. with D₂O, peri-OH); MS m/z: 318 (76%), 303.0868 (C₁₆H₁₅O₆ requires 308.0868, 100), 288 (12), 275 (14), 274 (15), 271 (17), 261 (17), 257 (16), 243 (13). Demethylation with BCl₃, as above, gave after prep. TLC, a red solid, mp 130°, identical (TLC, MS) with trans 12; Found: [M]⁺, 304.0950. $C_{16}H_{16}O_6$ requires M, 304.0947; MS m/z: 304 (100%), 289 (85), 260 (45).

Ventiloquinone-K (17). Found: C, 60.88; H, 5.46%; [M]⁺, 334.1047. $C_{17}H_{18}O_7$ requires C, 61.07; H, 5.43%; [M]⁺, 334.1052; [α]¹/₁₇ + 565° (MeOH, c 0.085); UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ε): 218 (4.85), 245 (4.69), 260 (4.38), 310 (3.97), 435 (3.84); IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 1605, 1650, 3300; ¹H NMR (220 MHz, CDCl₃): δ1.37 (3H, d, J = 6.1 Hz, Me-3), 1.61 (3H, d, J = 6.3 Hz, Me-1), 2.41 (1H, ddd, J = 17.2, 10.5, 2.1 Hz, H_a-4), 2.89 (1H, dt, J = 17.2, 1.9, 1.9 Hz, H_e-4), 3.58 (1H, m, 12 lines, H-3), 3.82 (3H, s, OMe), 4.13 (3H, s, OMe), 5.02 (ddt, J = 6.3, 1.9, 1.9 Hz, H-1), 7.34 (1H, s (br), exch. with D₂O, OH), 13.28 (s, exch. with D₂O, peri-OH); MS m/z: 334 (81%), 319.0808 (C₁₆H₁₅O₇ requires 319.0817, 100), 304 (11), 302 (14), 291 (13), 290 (17), 286 (13), 277 (25), 275 (18), 273 (17), 259 (16). The methyl ether (CH₂N₂ in Et₂O) obtained from ventiloquinone-K was identical (co-TLC, ¹H NMR) with ventiloquinone-C trimethyl ether (8).

Acknowledgements—We thank Dr. R. G. Cooke, University of Melbourne, for a sample of ventilagone, Edinburgh University WH-360 NMR Service, CIL, University of Hyderabad, and Dr. N. E. Mackenzie for some of the NMR spectra, and Dr. P. M. Scopes for CD spectra. Two of us (T.H. and B.K.R.) are grateful to CSIR, India, for the award of research fellowships, and D.S.M. thanks the S.E.R.C. for a studentship.

REFERENCES

- Rao, G. S. R., Hanumaiah, T. and Rao, K. V. J. (1980) Indian J. Chem. 19B, 97.
- Rao, B. K., Hanumaiah, T., Rao, C. P., Rao, G. S. R., Rao, K. V. J. and Thomson, R. H. (1983) Phytochemistry 22, 2583.
- Hanumaiah, T., Rao, B. K. and Rao, K. V. J. (1983) Acta Ciencia Indica 9, 209.
- Rao, B. K., Hanumaiah, T., Rao, J. U. M., Rao, K. V. J. and Thomson, R. H. (1984) Phytochemistry 23, 2105.

- Hanumaiah, T., Rao, B. K., Rao, C. P., Rao, G. S. R., Rao, J. U. M., Rao, K. V. J., Marshall, D. S. and Thomson, R. H. (1985) Phytochemistry 24, 1811.
- Hanumaiah, T., Rao, G. S. R., Rao, C. P., Rao, K. V. J., Cowe, H. J., Cox, P. J., Howie, R. A., Marshall, D. S. and Thomson, R. H. (1985) Tetrahedron 41, 635.
- Singh, I., Ogata, R. T., Moore, R. E., Chang, C. W. J. and Scheuer, P. J. (1968) Tetrahedron 24, 6053.
- 8. Abraham, R. J. and Bernstein, H. J. (1961) Can. J. Chem. 39,
- 9. Riggs, N. V. (1963) Aust. J. Chem. 16, 521.
- Cameron, D. W., Kingston, D. G. I., Sheppard, N. and Lord Todd (1964) J. Chem. Soc. 98.
- Jackman, L. M. and Sternhell, S. (1969) in Application of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry, 2nd edn. Pergamon Press, Oxford.
- Moore, R. E., Singh, H., Chang, C. W. J. and Scheuer, P. J. (1967) Tetrahedron 23, 3271.

- Ballantine, J. A. and Pillinger, C. T. (1967) Tetrahedron 23, 1691.
- Dreyer, D. L., Arai, I., Bachman, C. D., Anderson, W. R., Jr., Smith, R. G. and Daves, G. D., Jr. (1975) J. Am. Chem. Soc. 97, 4985.
- Kometani, T. and Yoshii, E. (1981) J. Chem. Soc. Perkin Trans. 1, 1191.
- Kometani, T., Takeuchi, Y. and Yoshii, E. (1981) J. Chem. Soc. Perkin Trans. 1, 1197.
- 17. Moore, R. E. and Scheuer, P. J. (1966) J. Org. Chem. 31, 3272.
- Cooke, R. G. and Johnson, B. L. (1965) Bull. Nat. Inst. Sci. India 28, 66.
- Cooke, R. G., Liu, A., Raston, C. L. and White, A. H. (1980) Aust. J. Chem. 33, 303.
- McGahren, W. J. and Mitscher, L. A. (1968) J. Org. Chem. 33, 1577.
- 21 Anderson, J. R., Edwards, R. L. and Whalley, A. J. S. (1983) J. Chem. Soc. Perkin Trans. 1, 2185.